Researchers using NASA's Fermi Gamma-ray Space Telescope have discovered the first gamma-ray pulsar in a galaxy other than our own. The object sets a new record for the most luminous gamma-ray pulsar known. The pulsar lies in the outskirts of the Tarantula Nebula in the Large Magellanic Cloud, a small galaxy that orbits our Milky Way and is located 163,000 light-years away. The Tarantula Nebula is the largest, most active and most complex star-formation region in our galactic neighborhood. It was identified as a bright source of gamma rays, the highest-energy form of light, early in the Fermi mission. Astronomers initially attributed this glow to collisions of subatomic particles accelerated in the shock waves produced by supernova . However, the discovery of gamma-ray pulses from a previously known pulsar named PSR J0540-6919 shows that it is responsible for roughly half of the gamma-ray brightness previously thought to come from the nebula. Gamma-ray pulses from J0540-6919 have 20 times the intensity of the previous record-holder, the pulsar in the famous Crab Nebula. Yet they have roughly similar levels of radio, optical and X-ray emission. Accounting for these differences will guide astronomers to a better understanding of the extreme physics at work in young pulsars.
Translate
lördag 14 november 2015
Fermi Detects First Gamma-ray Pulsar in Another Galaxy.
Researchers using NASA's Fermi Gamma-ray Space Telescope have discovered the first gamma-ray pulsar in a galaxy other than our own. The object sets a new record for the most luminous gamma-ray pulsar known. The pulsar lies in the outskirts of the Tarantula Nebula in the Large Magellanic Cloud, a small galaxy that orbits our Milky Way and is located 163,000 light-years away. The Tarantula Nebula is the largest, most active and most complex star-formation region in our galactic neighborhood. It was identified as a bright source of gamma rays, the highest-energy form of light, early in the Fermi mission. Astronomers initially attributed this glow to collisions of subatomic particles accelerated in the shock waves produced by supernova . However, the discovery of gamma-ray pulses from a previously known pulsar named PSR J0540-6919 shows that it is responsible for roughly half of the gamma-ray brightness previously thought to come from the nebula. Gamma-ray pulses from J0540-6919 have 20 times the intensity of the previous record-holder, the pulsar in the famous Crab Nebula. Yet they have roughly similar levels of radio, optical and X-ray emission. Accounting for these differences will guide astronomers to a better understanding of the extreme physics at work in young pulsars.
Prenumerera på:
Kommentarer till inlägget (Atom)
Inga kommentarer:
Skicka en kommentar